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Notations

In the sequel, H will be a fixed Hilbert space and B(H) denotes the space

of all bounded linear operators on H.

Let A be a C ∗−subalgebra of B(H).

Abbreviations :
w.o. - weak-operator

s.o. - strong-operator

(A)1 := {x ∈ A : ‖x‖ ≤ 1} (the closed unit ball of A)

Asa = {x ∈ A : x∗ = x} (the set of self-adjoint operators in A)

We denote the closure of A in the s.o. topology of A by A
SOT .
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Recall

The strong operator topology on B(H) is a locally convex topology

generated by the seminorms ‖.‖x , x ∈ H where

‖T‖x = ‖Tx‖,T ∈ B(H).

The weak operator topology on B(H) is a locally convex topology

generated by the seminorms ‖.‖x ,y , x , y ∈ H where

‖T‖x ,y = |〈Tx , y〉|,T ∈ B(H).
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Useful Facts

(1) Weak topology ⊆ strong topology.

The inclusion is strict when dimH =∞.

(2) If xα → x in s.o. topology, then xα → x in the w.o. topology.

(3) x 7→ x∗ is w.o. continuous on B(H)

x 7→ Re x is w.o. continuous on B(H)

(4) If S is a convex subset of B(H),

then

S
WOT

= S
SOT

.

(5) If f is a real-valued continuous function on R which vanishes at ∞,

then T 7→ f (T ) is s.o. continuous on B(H)sa.
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Kaplansky Density Theorem

Let A be a C ∗−subalgebra of B(H) and let M = A
SOT . Then

(a) (Msa)1 = (Asa)1
SOT

.

That is, the closed unit ball of Msa is the s.o. closure of the closed

unit ball of Asa. In other words, the closed unit ball of Asa is s.o.

dense in the closed unit ball of Msa. The above statement is true for

positive and unitary operators.

(b) Msa = A
SOT
sa .

The above expression is true for positive and unitary operators.

(c) (M)1 = (A)1
SOT

.
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Proof : (Msa)1 = (Asa)1
SOT

(a) We have M = A
SOT → (1)

Let x ∈ (Msa)1.

By (1), ∃ a net {xα} in A such that xα → x in the s.o. topology.

Since xα → x in s.o. topology, xα → x in w.o. topology.

Let yα = xα+x∗α
2 . Then yα ∈ Asa.

Since x 7→ x∗ is w.o. continuous on B(H),

x∗α → x∗, hence {yα} in Asa converges to x+x∗

2 = x in the w.o. topology.

Since Asa is convex, AWOT
sa = A

SOT
sa .

Hence ∃ a net {zα} in Asa such that zα → x in the s.o. topology.
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Consider the real-valued continuous function f on R defined by

f (t) =

t |t| ≤ 1
1
t |t| ≥ 1

∴ x 7→ f (x) is s.o. continuous on B(H)sa.

As zα ∈ Asa and zα
SOT−−−→ x , f (zα)

SOT−−−→ f (x).

However, x is self-adjoint and ‖x‖ ≤ 1, so σ(x) ∈ [−1, 1], so f |σ(x) = t

and f (x) = x by the functional calculus.

Moreover f = f and ‖f ‖∞ ≤ 1, so f (zα)
∗ = f (zα) and ‖f (zα)‖ ≤ 1 for all

α.

That is, f (zα) ∈ (Asa)1 and f (zα)
SOT−−−→ f (x) = x , so x ∈ (Asa)

SOT

1 .

∴ (Msa)1 = (Asa)
SOT

1 .
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Proof : Msa = A
SOT
sa

(b) Let x ∈ Msa. Since M = A
SOT , a net {xα} in A such that xα → x in

the s.o. topology.

xα
SOT−−−→ x ⇒ xα

WOT−−−→ x ⇒ Re xα
WOT−−−→ Re x = x (∵ x 7→ Re x is w.o.

continuous). Since A is C ∗-subalgebra, Re xα ∈ Asa.

Also we have Re xα
WOT−−−→ x . As Asa is convex, x ∈ Asa

WOT
= Asa

SOT , so

∃ {zα} in Asa such that

zα
SOT−−−→ x .

∴ Msa = Asa
SOT .
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Proof : (M)1 = A1
SOT

.

(c) Let x ∈ (M)1. Define x̃ =

(
0 x

x∗ 0

)
∈ M2(M). Then x̃ is self-adjoint.

Since ‖x̃‖ = sup‖(f ,g)‖≤1 ‖x̃(f , g)‖ = sup‖(f ,g)‖≤1(‖xg‖2 + ‖xf ‖2)
1
2

≤ sup‖(f ,g)‖≤1(‖g‖2 + ‖f ‖2)
1
2 = 1, we have ‖x̃‖ ≤ 1.

Since M = A
SOT , M2(M) = M2(A)

SOT → (2) (Exercise).

From (2) and part (a), ∃ {ỹα} in (M2(A)sa)1 such that ỹα
SOT−−−→ x̃ .

Since {ỹα} is self-adjoint in M2(A), it is of the form

ỹα =

(
zα xα

x∗α wα

)
for each α.

Then for each xα is in A with ‖xα‖ ≤ 1 and xα
SOT−−−→ x (Exercise).
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