Kaplansky Density Theorem

P. Sam Johnson

NITK, Surathkal, India

In the sequel, H will be a fixed Hilbert space and $\mathcal{B}(H)$ denotes the space of all bounded linear operators on H.

Let A be a C^* -subalgebra of $\mathcal{B}(H)$.

Abbreviations :

- w.o. weak-operator
- s.o. strong-operator

 $\begin{aligned} (A)_1 &:= \{ x \in A : \|x\| \leq 1 \} \text{ (the closed unit ball of } A) \\ A_{sa} &= \{ x \in A : x^* = x \} \text{ (the set of self-adjoint operators in } A) \end{aligned}$

We denote the closure of A in the s.o. topology of A by \overline{A}^{SOT} .

The strong operator topology on $\mathcal{B}(H)$ is a locally convex topology generated by the seminorms $||.||x, x \in H$ where

$$||T||_{x} = ||Tx||, T \in \mathcal{B}(H).$$

The weak operator topology on $\mathcal{B}(H)$ is a locally convex topology generated by the seminorms $\|.\|_{x,y}, x, y \in H$ where

$$||T||_{x,y} = |\langle Tx, y \rangle|, T \in \mathcal{B}(H).$$

Useful Facts

- (1) Weak topology \subseteq strong topology. The inclusion is strict when dim $H = \infty$.
- (2) If $x_{\alpha} \to x$ in s.o. topology, then $x_{\alpha} \to x$ in the w.o. topology.
- (3) $x \mapsto x^*$ is w.o. continuous on $\mathcal{B}(H)$ $x \mapsto Re x$ is w.o. continuous on $\mathcal{B}(H)$
- (4) If S is a convex subset of B(H), then

$$\overline{S}^{WOT} = \overline{S}^{SOT}$$

(5) If f is a real-valued continuous function on \mathbb{R} which vanishes at ∞ , then $T \mapsto f(T)$ is s.o. continuous on $\mathcal{B}(H)_{sa}$.

Let A be a C^* -subalgebra of $\mathcal{B}(H)$ and let $M = \overline{A}^{SOT}$. Then

(a)
$$(M_{sa})_1 = \overline{(A_{sa})_1}^{SOT}$$

That is, the closed unit ball of M_{sa} is the s.o. closure of the closed unit ball of A_{sa} . In other words, the closed unit ball of A_{sa} is s.o. dense in the closed unit ball of M_{sa} . The above statement is true for positive and unitary operators.

(b)
$$M_{sa} = \overline{A}_{sa}^{SOT}$$
.

The above expression is true for positive and unitary operators. (c) $(M)_1 = \overline{(A)_1}^{SOT}$.

Proof : $(M_{sa})_1 = \overline{(A_{sa})_1}^{SOT}$

(a) We have $M = \overline{A}^{SOT} \rightarrow (1)$ Let $x \in (M_{sa})_1$. By (1), \exists a net $\{x_{\alpha}\}$ in A such that $x_{\alpha} \to x$ in the s.o. topology. Since $x_{\alpha} \to x$ in s.o. topology, $x_{\alpha} \to x$ in w.o. topology. Let $y_{\alpha} = \frac{x_{\alpha} + x_{\alpha}^{*}}{2}$. Then $y_{\alpha} \in A_{sa}$. Since $x \mapsto x^*$ is w.o. continuous on $\mathcal{B}(H)$, $x_{\alpha}^* \to x^*$, hence $\{y_{\alpha}\}$ in A_{sa} converges to $\frac{x+x^*}{2} = x$ in the w.o. topology. Since A_{sa} is convex, $\overline{A}_{sa}^{WOT} = \overline{A}_{sa}^{SOT}$. Hence \exists a net $\{z_{\alpha}\}$ in A_{sa} such that $z_{\alpha} \to x$ in the s.o. topology.

Consider the real-valued continuous function f on \mathbb{R} defined by

$$f(t) = egin{cases} t & |t| \leq 1 \ rac{1}{t} & |t| \geq 1 \end{cases}$$

 $\therefore x \mapsto f(x)$ is s.o. continuous on $\mathcal{B}(H)_{sa}$. As $z_{\alpha} \in A_{sa}$ and $z_{\alpha} \xrightarrow{SOT} x$, $f(z_{\alpha}) \xrightarrow{SOT} f(x)$. However, x is self-adjoint and $||x|| \leq 1$, so $\sigma(x) \in [-1, 1]$, so $f|_{\sigma(x)} = t$ and f(x) = x by the functional calculus. Moreover $\overline{f} = f$ and $||f||_{\infty} \leq 1$, so $f(z_{\alpha})^* = f(z_{\alpha})$ and $||f(z_{\alpha})|| \leq 1$ for all α .

That is,
$$f(z_{\alpha}) \in (A_{sa})_1$$
 and $f(z_{\alpha}) \xrightarrow{SOT} f(x) = x$, so $x \in \overline{(A_{sa})}_1^{SOT}$.
$$\therefore (M_{sa})_1 = \overline{(A_{sa})}_1^{SOT}.$$

Proof : $M_{sa} = \overline{A}_{sa}^{SOT}$

(b) Let $x \in M_{sa}$. Since $M = \overline{A}^{SOT}$, a net $\{x_{\alpha}\}$ in A such that $x_{\alpha} \to x$ in the s.o. topology. $x_{\alpha} \xrightarrow{SOT} x \Rightarrow x_{\alpha} \xrightarrow{WOT} x \Rightarrow Re \ x_{\alpha} \xrightarrow{WOT} Re \ x = x \ (\because x \mapsto Re \ x \text{ is w.o.}$ continuous). Since A is C^* -subalgebra, $Re \ x_{\alpha} \in A_{sa}$. Also we have $Re \ x_{\alpha} \xrightarrow{WOT} x$. As A_{sa} is convex, $x \in \overline{A_{sa}}^{WOT} = \overline{A_{sa}}^{SOT}$, so $\exists \{z_{\alpha}\}$ in A_{sa} such that

$$z_{\alpha} \xrightarrow{SOT} x.$$

 $\therefore M_{sa} = \overline{A_{sa}}^{SOT}.$

Proof : $(M)_1 = \overline{A_1}^{SOT}$.

(c) Let
$$x \in (M)_1$$
. Define $\tilde{x} = \begin{pmatrix} 0 & x \\ x^* & 0 \end{pmatrix} \in M_2(M)$. Then \tilde{x} is self-adjoint.
Since $\|\tilde{x}\| = \sup_{\|(f,g)\| \le 1} \|\tilde{x}(f,g)\| = \sup_{\|(f,g)\| \le 1} (\|xg\|^2 + \|xf\|^2)^{\frac{1}{2}} \le \sup_{\|(f,g)\| \le 1} (\|g\|^2 + \|f\|^2)^{\frac{1}{2}} = 1$, we have $\|\tilde{x}\| \le 1$.

Since $M = \overline{A}^{SOT}$, $M_2(M) = \overline{M_2(A)}^{SOT} \to (2)$ (Exercise). From (2) and part (a), $\exists \{\tilde{y}_{\alpha}\}$ in $(M_2(A)_{sa})_1$ such that $\tilde{y}_{\alpha} \xrightarrow{SOT} \tilde{x}$. Since $\{\tilde{y}_{\alpha}\}$ is self-adjoint in $M_2(A)$, it is of the form

$$ilde{y}_{lpha} = egin{pmatrix} z_{lpha} & x_{lpha} \ x_{lpha}^* & w_{lpha} \end{pmatrix} \qquad ext{for each } lpha.$$

Then for each x_{α} is in A with $||x_{\alpha}|| \leq 1$ and $x_{\alpha} \xrightarrow{SOT} x$ (Exercise).

Reference

Kehe Zhu, An Introduction to Operator Algebras, CRC Press, 1993.

3

A B F A B F

< AP