Kaplansky Density Theorem

P. Sam Johnson

NITK, Surathkal, India

Notations

In the sequel, H will be a fixed Hilbert space and $\mathcal{B}(H)$ denotes the space of all bounded linear operators on H.

Let A be a C^{*}-subalgebra of $\mathcal{B}(H)$.

Abbreviations:

w.o. - weak-operator
s.o. - strong-operator
$(A)_{1}:=\{x \in A:\|x\| \leq 1\}$ (the closed unit ball of A)
$A_{\text {sa }}=\left\{x \in A: x^{*}=x\right\}$ (the set of self-adjoint operators in A)
We denote the closure of A in the s.o. topology of A by $\bar{A}^{S O T}$.

Recall

The strong operator topology on $\mathcal{B}(H)$ is a locally convex topology generated by the seminorms $\|\cdot\| x, x \in H$ where

$$
\|T\|_{x}=\|T x\|, T \in \mathcal{B}(H)
$$

The weak operator topology on $\mathcal{B}(H)$ is a locally convex topology generated by the seminorms $\|\cdot\|_{x, y}, x, y \in H$ where

$$
\|T\|_{x, y}=|\langle T x, y\rangle|, T \in \mathcal{B}(H)
$$

Useful Facts

(1) Weak topology \subseteq strong topology.

The inclusion is strict when $\operatorname{dim} H=\infty$.
(2) If $x_{\alpha} \rightarrow x$ in s.o. topology, then $x_{\alpha} \rightarrow x$ in the w.o. topology.
(3) $x \mapsto x^{*}$ is w.o. continuous on $\mathcal{B}(H)$
$x \mapsto \operatorname{Re} x$ is w.o. continuous on $\mathcal{B}(H)$
(4) If S is a convex subset of $\mathcal{B}(H)$, then

$$
\bar{S}^{W O T}=\bar{S}^{S O T} .
$$

(5) If f is a real-valued continuous function on \mathbb{R} which vanishes at ∞, then $T \mapsto f(T)$ is s.o. continuous on $\mathcal{B}(H)_{\text {sa }}$.

Kaplansky Density Theorem

Let A be a C^{*}-subalgebra of $\mathcal{B}(H)$ and let $M=\bar{A}^{S O T}$. Then
(a) $\left(M_{s a}\right)_{1}={\overline{\left(A_{s a}\right)}{ }_{1}}^{\text {SOT }}$.

That is, the closed unit ball of $M_{s a}$ is the s.o. closure of the closed unit ball of $A_{\text {sa. }}$. In other words, the closed unit ball of $A_{s a}$ is s.o. dense in the closed unit ball of $M_{s a}$. The above statement is true for positive and unitary operators.
(b) $M_{s a}=\bar{A}_{s a}^{S O T}$.

The above expression is true for positive and unitary operators.
(c) $(M)_{1}={\overline{(A)_{1}}}^{S O T}$.

Proof : $\left(M_{s a}\right)_{1}={\overline{\left(A_{s a}\right)_{1}}}^{S O T}$

(a) We have $M=\bar{A}^{\text {SOT }} \rightarrow(1)$

Let $x \in\left(M_{s a}\right)_{1}$.
By (1), \exists a net $\left\{x_{\alpha}\right\}$ in A such that $x_{\alpha} \rightarrow x$ in the s.o. topology. Since $x_{\alpha} \rightarrow x$ in s.o. topology, $x_{\alpha} \rightarrow x$ in w.o. topology.
Let $y_{\alpha}=\frac{x_{\alpha}+x_{\alpha}^{*}}{2}$. Then $y_{\alpha} \in A_{\text {sa }}$.
Since $x \mapsto x^{*}$ is w.o. continuous on $\mathcal{B}(H)$,
$x_{\alpha}^{*} \rightarrow x^{*}$, hence $\left\{y_{\alpha}\right\}$ in $A_{s a}$ converges to $\frac{x+x^{*}}{2}=x$ in the w.o. topology. Since $A_{s a}$ is convex, $\bar{A}_{s a}^{W O T}=\bar{A}_{s a}^{S O T}$.
Hence \exists a net $\left\{z_{\alpha}\right\}$ in $A_{s a}$ such that $z_{\alpha} \rightarrow x$ in the s.o. topology.

Consider the real-valued continuous function f on \mathbb{R} defined by

$$
f(t)= \begin{cases}t & |t| \leq 1 \\ \frac{1}{t} & |t| \geq 1\end{cases}
$$

$\therefore x \mapsto f(x)$ is s.o. continuous on $\mathcal{B}(H)_{\text {sa }}$.
As $z_{\alpha} \in A_{s a}$ and $z_{\alpha} \xrightarrow{\text { SOT }} x, f\left(z_{\alpha}\right) \xrightarrow{\text { SOT }} f(x)$.
However, x is self-adjoint and $\|x\| \leq 1$, so $\sigma(x) \in[-1,1]$, so $\left.f\right|_{\sigma(x)}=t$ and $f(x)=x$ by the functional calculus.
Moreover $\bar{f}=f$ and $\|f\|_{\infty} \leq 1$, so $f\left(z_{\alpha}\right)^{*}=f\left(z_{\alpha}\right)$ and $\left\|f\left(z_{\alpha}\right)\right\| \leq 1$ for all α.

$$
\therefore\left(M_{s a}\right)_{1}={\left.\overline{\left(A_{s a}\right.}\right)_{1}^{S O T} .}^{S O T} \text {. }
$$

Proof : $M_{s a}=\bar{A}_{s a}^{S O T}$

(b) Let $x \in M_{\text {sa }}$. Since $M=\bar{A}^{S O T}$, a net $\left\{x_{\alpha}\right\}$ in A such that $x_{\alpha} \rightarrow x$ in the s.o. topology.
$x_{\alpha} \xrightarrow{\text { SOT }} x \Rightarrow x_{\alpha} \xrightarrow{\text { WOT }} x \Rightarrow \operatorname{Re} x_{\alpha} \xrightarrow{\text { WOT }} \operatorname{Re} x=x(\because x \mapsto \operatorname{Re} x$ is w.o.
continuous). Since A is C^{*}-subalgebra, $\operatorname{Re} x_{\alpha} \in A_{\text {sa }}$.
Also we have $\operatorname{Re} x_{\alpha} \xrightarrow{W O T} x$. As $A_{s a}$ is convex, $x \in{\overline{A_{s a}}}^{W O T}={\overline{A_{s a}}}^{\text {SOT }}$, so
$\exists\left\{z_{\alpha}\right\}$ in $A_{\text {sa }}$ such that

$$
z_{\alpha} \xrightarrow{S O T} x .
$$

$\therefore M_{s a}=\overline{A_{s a}}{ }^{S O T}$.

Proof : $(M)_{1}={\overline{A_{1}}}^{S O T}$.

(c) Let $x \in(M)_{1}$. Define $\tilde{x}=\left(\begin{array}{cc}0 & x \\ x^{*} & 0\end{array}\right) \in M_{2}(M)$. Then \tilde{x} is self-adjoint.

Since $\|\tilde{x}\|=\sup _{\|(f, g)\| \leq 1}\|\tilde{x}(f, g)\|=\sup _{\|(f, g)\| \leq 1}\left(\|x g\|^{2}+\|x f\|^{2}\right)^{\frac{1}{2}}$ $\leq \sup _{\|(f, g)\| \leq 1}\left(\|g\|^{2}+\|f\|^{2}\right)^{\frac{1}{2}}=1$, we have $\|\tilde{x}\| \leq 1$.

Since $M=\bar{A}^{S O T}, M_{2}(M)={\overline{M_{2}(A)}}^{S O T} \rightarrow(2)$ (Exercise).
From (2) and part (a), $\exists\left\{\tilde{y}_{\alpha}\right\}$ in $\left(M_{2}(A)_{s a}\right)_{1}$ such that $\tilde{y}_{\alpha} \xrightarrow{S O T} \tilde{x}$. Since $\left\{\tilde{y}_{\alpha}\right\}$ is self-adjoint in $M_{2}(A)$, it is of the form

$$
\tilde{y}_{\alpha}=\left(\begin{array}{ll}
z_{\alpha} & x_{\alpha} \\
x_{\alpha}^{*} & w_{\alpha}
\end{array}\right) \quad \text { for each } \alpha .
$$

Then for each x_{α} is in A with $\left\|x_{\alpha}\right\| \leq 1$ and $x_{\alpha} \xrightarrow{\text { SOT }} x$ (Exercise).

Reference

Kehe Zhu, An Introduction to Operator Algebras, CRC Press, 1993.

